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Abstract— In this paper, a Bayesian inference problem is
set up to infer the time delay and the resistance models
from the dynamics of a connected automated vehicle. The
delayed rejection adaptive Metropolis Markov chain Monte
Carlo method is applied to obtain the posterior distributions
of time delay and resistance parameters simultaneously using
experimental data. The estimations of the time delay are shown
to be consistent among multiple datasets and different resistance
models. The distribution of the posterior indicates that there
exist multiple modes in time delay, corresponding to different
behaviors in acceleration and deceleration.

I. INTRODUCTION

Time delay and resistance forces are essential for modeling
the dynamics of vehicles with high fidelity. Time delays
usually show up as the human reaction time, engine actu-
ation time and communication delays in connected vehicle
systems [1]. In [2] different car-following models were
evaluated using real-world data and simulations and it was
shown that including time delays improves the fidelity of
these models. On the other hand, resistance forces play
an important role in vehicle performance and energy con-
sumption [3]. We are interested in identifying the overall
time delay and the coefficients of resistance forces for the
longitudinal dynamics of a connected automated vehicle
(CAV) based on real experimental data.

Bayesian inference has shown its power in parameter
estimation in the field of car-following dynamics of human-
driven vehicles: it can be used in both model selection [4] and
calibration [5]. For example, hierarchical Bayesian estima-
tion was applied in [6] for calibrating a car-following model
with time-varying parameters related to vertical gradient.
In [7] a time-varying car-following model was established
via particle filtering while in [8] particle filtering was used
for online parameter estimation. Inferring the time delay was
not considered in the above-mentioned works, but it was
introduced into the model as a given parameter in [5] and
driver reaction time was identified through cross-correlation
calculation in [9]. In [10], sensor delay for an automated
vehicle was identified as a discrete parameter via trials of
recursive least squares method. In this work, we consider
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the time delay as a continuous parameter in the longitudinal
dynamics of a CAV and we infer the delay together with
resistance coefficients using Bayesian inference.

Applying Bayesian inference for time delay systems is
not a common practice, since the time delay is a special
parameter that changes the relationship between the states.
In [11] the authors gave an example of learning a delay
differential equation with Gaussian process based on Markov
Chain Monte Carlo sampling method. Sequential time delay
updating with particle filter was used for multi-path global
navigation satellite systems in [12]. A special distributed time
delay was considered in [13] in the field of biochemical
processes. In our application, the time delay determines
which past state affects the state derivative of the CAV,
and we compute the corresponding likelihood of the delay
from data. To handle this, we introduce a general Bayesian
network for time delay systems, and we identify different
modes in the delay parameter through sampling methods.
We also show the consistency of time delay among different
resistance models.

The paper is constructed as follows. We introduce the
longitudinal dynamics and the longitudinal controller of
the connected automated vehicle with different resistance
terms and the data from real experiments in Section II. In
Section III, we set up the Bayesian inference problem for
time delay systems in two alternative ways based on different
noise considerations, and we implement the Delayed Rejec-
tion Adaptive Metropolis (DRAM) method for time delay
systems with process noise. In Section IV, we analyze the
parameter distributions given by DRAM for different data
sets and resistance models. In Section V, we summarize our
results and give directions for future work.

II. PROBLEM SETTING

We consider the scenario shown in Fig. 1(a) where a con-
nected automated vehicle (CAV) follows a connected human-
driven vehicle (CHV). The CAV measures its own position
and velocity, while it is also aware of the position and
velocity of the leading CHV via vehicle-to-vehicle (V2V)
communication. These data are used in the longitudinal
controller of the CAV. This scenario was realized in the
experiments detailed in [14], [15].

For the CAV, the longitudinal dynamics are modeled by the
following delayed double integrator model with saturation:

ḣ(t) = vL(t)− v(t),

v̇(t) = −p
(
v(t)

)
+ sat

(
u(t− τ), v(t)

)
,

(1)
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Fig. 1. (a) Experimental setup where a connected automated vehicle
(CAV) follows a connected human-driven vehicle (CHV) based on the data
transmitted through vehicle-to-vehicle (V2V) connectivity. (b) Nonlineari-
ties used in the model.

where h is the distance headway between the vehicles, v is
the speed of the CAV and vL is the speed of the CHV; cf.
Fig. 1(a). The control input u prescribes the CAV’s desired
acceleration and the saturation function

sat(u, v) =


amin u < amin,

u amin ≤ u ≤ ā(v),

ā(v) u > ā(v),

ā(v) = min

{
amax,

P

mv

} (2)

includes the acceleration limits amin and amax while ā(v)
is determined by the power limit P and the mass m of the
CAV. In this model, we consider the time delay τ associated
with communication, computation and actuation. We also
take into account resistances (such as air drag and rolling
resistance) by a quadratic function

p(v) = 0.001cv2 + 0.01bv + 0.1a. (3)

Our aim is to infer the time delay τ and the coefficients
c, b and a of the resistance terms from experimental data
knowing the control algorithm of the CAV.

The desired acceleration of the CAV is assigned by the
following control law [16], [17]:

u = α
(
V (h)− v

)
+ β

(
W (vL)− v

)
, (4)

where α and β are control gains. The control law includes
the range policy V that describes a desired speed according
to the headway:

V (h) =


0 h < hst,

κ(h− hst) hst ≤ h ≤ hgo,

vmax h > hgo,

(5)

and the speed policy W that gives a desired speed based on
the lead CHV’s speed:

W (vL) =

{
vL vL ≤ vmax,

vmax vL > vmax.
(6)

The functions V , W , sat and ā are depicted in Fig. 1 (b).
In the experiments [14], [15], controller (4) was used

with parameters α = 0.4 s−1, β = 0.5 s−1, κ = 0.6 s−1,

(a) (b)

Fig. 2. Dataset with average velocity vave = 15m/s.

hst = 5 m, vmax = 30 m/s, hgo = hst + vmax/κ = 55 m,
amin = −7 m/s2, amax = 3 m/s2, P = 50 kW and m =
1770 kg. These are considered as known parameters, while
the time delay τ and the air drag coefficients c, b and a
are the unknowns to be determined from data. We chose
7 runs of experiments with different average velocity vave

ranging from 2 m/s to 26 m/s. One of the datasets with
vave = 15 m/s is shown in Fig. 2.

In what follows, we set up the Bayesian inference problem
for the time delay system (1) and apply a Markov Chain
Monte Carlo method to obtain the posterior distribution of
τ , c, b and a for each dataset. We also compare different re-
sistance models (that are the special cases of (3)) and analyze
the inference results over the models and the datasets.

III. METHODOLOGY

In (1), we consider the state and input to be X = [h, v]>

and U = vL, respectively. Since the experimental data in-
clude both the position and the velocity of the two vehicles,
the state X and the input U can all be observed. With X
and U , the continuous time system (1) is of the form

Ẋ(t) = f(X(t), X(t− τ), U(t), U(t− τ)). (7)

We discretize the system using the measurement time step
∆t = 0.1 s, and the corresponding discrete time system can
be written as

Xk+1 = Φ(Xk,Uk, θ) = Xk + ∆tf(Xk,Uk, θ) (8)

based on a forward Euler finite difference scheme, where

Xk = [hk, vk, hk−1, vk−1, . . . , hk−r, vk−r]>,

Uk = [vkL, v
k−1
L , . . . , vk−rL ]>.

(9)

Here Xk and Uk contain the past states and inputs from time
step k− r to k, and r corresponds to the maximum allowed
time delay τmax = r∆t while θ = [τ, c, b, a]> contains the
parameters we wish to learn.

Recall Bayes’ rule for inference:

P (θ|D) =
L(D|θ)P (θ)

P (D)
, (10)

where D is the given data, P (D) is the marginal probability
of the data, L(D|θ) is the likelihood of the data under given
parameters, P (θ) is the prior and P (θ|D) is the posterior.
P (D) acts as a normalizing constant, while the prior P (θ)
represents the prior belief in the parameters before seeing
the data and it can be used as regularization. The likelihood
L(D|θ) can be calculated for chosen parameters according
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Fig. 3. Bayesian network of time delay systems.

to the noise model. The posterior P (θ|D) is what we are
interested in computing.

The Bayesian network of time delay systems is represented
in Fig. 3 for the example of a fixed time delay τ = 3∆t
and maximum allowed time delay τmax = 4∆t. The main
difference between this network and Bayesian networks
without delay is that the time delay τ affects the relationships
between the states, i.e., state Xk+1 not only depends on Xk

and Uk but also on the preceding values of the state and
input stored in Xk and Uk. In this figure, ξ and η indicate the
process noise and measurement noise, respectively. Since the
states are fully-observed in our application, we assume that
only one of the noise terms exists in the system so that the
problem can be simplified. Namely, we consider two settings
in the following subsection: (i) a time delay system with only
measurement noise η and (ii) a time delay system with only
process noise ξ. One can also consider both noises in the
system [18], which is one of our future directions on the
applications with time delay inference.

A. Posteriors for Time Delay Systems

If we assume that noise only exists in the measurement,
based on (8) we can write the system equations as

Xk = Φ(Xk−1,Uk−1, θ),

Y k = Xk + η, η ∼ N (0,Γ),
(11)

where Y k is the measurement at time tk = k∆t. For a given
initial history, the states of the system are deterministic. In
other words, Xk does not depend on the measurements. In
this case, we can write the posterior as

P (θ|D) ∝ P (θ)

N∏
k=1

P (Y k|Xk), (12)

where Xk is obtained by simulation for a given initial history
and parameter set. As P (Y k|Xk) ∼ N (Xk,Γ), we can write
the log-posterior as:

logP (θ|D) ∝ logP (θ)− 1

2

N∑
k=1

∥∥Y k −Xk
∥∥2

Γ
, (13)

where ‖·‖2Γ = (·)>(Γ)−1(·).
If we assume that the controller assigns the commanded

acceleration based on measurement data and the measure-
ments are filtered (which is the case in the experiment), then

the error of the model can be viewed as a process noise ξ.
Accordingly, the system can be described as

Xk = Φ(Xk−1,Uk−1, θ) + ξ, ξ ∼ N (0,Σ),

Y k = Xk.
(14)

In this case, the future predicted states depend on the
measurement as Xk = Φ(Yk−1,Uk−1, θ) + ξ, where Yk−1

includes the history of measurements from time step k−r−1
up to time step k − 1. Therefore, the posterior is written as

P (θ|D) ∝ P (θ)

N∏
k=2

P (Y k|Yk−1,Uk−1, θ), (15)

where P (Y k|Yk−1,Uk−1, θ) ∼ N (Φ(Yk−1,Uk−1, θ),Σ),
that is, P (Y k − Φ(Yk−1,Uk−1, θ)) ∼ N (0,Σ). Using the
same difference scheme as in (8), we can rewrite this into

Y k − Y k−1 −∆tf(Yk−1,Uk−1, θ) ∼ N (0,Σ). (16)

Thus, we can write the log-posterior as

logP (θ|D) ∝ logP (θ)

− 1

2

N∑
k=2

∥∥∥∥Y k − Y k−1

∆t
− f(Yk−1,Uk−1, θ)

∥∥∥∥2

Σ/∆t2
.

(17)

We remark that for system (11), one needs to simulate the
delayed dynamics for each choice of parameters to obtain the
state Xk. It is computationally expensive if one uses sam-
pling methods which require a large amount of simulations.
As opposed, in system (14) we consider the difference of
the measurements and the corresponding delay differential
equation. This speeds up the sampling process significantly.
Moreover, in this particular example with experimental data,
the CAV made decisions based on measurements, and thus,
it is more realistic to use the second system. Therefore, we
focus on system (14) with only process noise to obtain the
posterior distribution of the time delay and the resistance co-
efficients from the data. We achieve this by implementing the
Delayed Rejection Adaptive Metropolis (DRAM) method.

B. DRAM for Time Delay Systems

We apply the Delayed Rejection Adaptive Metropolis
Markov Chain Monte Carlo method [19] for parameter in-
ference. In a standard Markov Chain Monte Carlo (MCMC)
method, assuming we have the current sample (parame-
ters) θ(i), we propose a new sample θ based on proposal
distribution, then we accept the new sample as the next
sample θ(i+1) = θ with the probability a(θ(i), θ) or reject it
by setting θ(i+1) = θ(i) with probability 1− a(θ(i), θ). The
distribution given by the resulting samples approaches the
target distribution (the posterior distribution) as the number
of samples goes to infinity. DRAM [19] combines delayed
rejection [20] with adaptive Metropolis MCMC method [21].
Delayed rejection means that we do not reject the proposed
sample for the first time but propose a second sample with
a smaller scaled covariance instead. We delay the rejection
decision, which increases the acceptance ratio and reduces



Fig. 4. Probability density function of the prior selected for all parameters.

the correlations between samples. Note that this delay is part
of the sampling algorithm and is not related to the time delay
τ we are trying to infer. The DRAM is adaptive because we
utilize the covariance from obtained samples to propose new
samples. The adaptive covariance in the proposal distribution
helps to further reduce the correlation between samples. The
DRAM used in this inference is described in Algorithm 1
with acceptance probabilities

a1(θ(i), θ1) = min

{
π(θ1)q1(θ(i)|θ1)

π(θ(i))q1(θ1|θ(i))
, 1

}
,

a2(θ(i), θ1, θ2) = min

{
π(θ2)q1(θ1|θ2)

π(θ(i))q1(θ1|θ(i))

× q2(θ(i)|θ1, θ2)(1− a1(θ2|θ1))

q2(θ2|θ1, θ(i))(1− a1(θ(i)|θ1))
, 1

}
.

(18)

In this application, we use random walk proposal q(θ),
and the posterior π(θ) = P (θ|D). The prior distribution used
for time delays should imply that the time delays are non-
negative, thus, we choose the gamma prior shown in Fig. 4
for the time delay. In fact, the same prior is used for all
other parameters since they are also non-negative and scaled
to be of the same order of the magnitude as the delay via
the scaling factors 0.001, 0.01 and 0.1 used in (3) for c, b,
and a, respectively. Additionally, the time delay is limited
below the maximum allowed value τmax to keep the length
of prediction to be the same as the reference data. This can
be achieved by choosing another specially designed prior
distribution for the time delay, or by assigning π(θ) = 0 for
τ > τmax as an extra regularization. We implemented the
latter option for simplicity and set τmax large enough so that
the effect of truncation becomes negligible (the area below
the prior is larger than 0.99).

IV. IMPLEMENTATION AND RESULTS

In the implementation, we choose the covariance matrix

Σ =

[
0.22 0

0 0.22

]
. The maximum allowed time delay τmax

is set to 6 s. We generate 10000 samples and discard the
first half so that the remaining samples represent the pos-
terior distribution. We consider three different cases of the
quadratic resistance model (3) listed in Table I.

We first combine all 7 datasets with different average
velocities into one and infer the parameters from it. We
show the marginal distributions given by 5000 samples for
every parameter pair in Fig. 5. The maximum a posteriori
probability (MAP) estimates are marked by red dots. The
distributions of parameter τ and c are quite consistent among
all the models, while c and b have a strong correlation in the
cba model. Moreover, the distribution of the time delay τ has
two modes, which indicates that there may exist two distinct
time delays in the system, potentially corresponding to the

Data: Data D for inference
Result: Samples of θ distributed as P (θ|D)
obtain a maximum a posteriori probability (MAP) estimate
θMAP and initialize the first sample θ(0) = θMAP with
corresponding covariance C(0) = −(∇2

θ log π(θ
MAP))−1

for i = 0, ..., n do
propose sample θ1 = θ(i) + ζ1, ζ1 ∼ N (0, C(0))
calculate the acceptance probability a1(θ(i), θ1),
draw a number r1 ∼ U [0, 1],
if r1 < a1(θ

(i), θ) then
accept, θ(i+1) = θ1

end
else

propose another sample θ2 = θ(i) + ζ2,
ζ2 ∼ N (0, 0.5C(0))

calculate the acceptance probability
a2(θ

(i), θ1, θ2),
draw a number r2 ∼ U [0, 1],
if r2 < a2(θ

(i), θ1, θ2) then
accept, θ(i+1) = θ2

end
else

reject, θ(i+1) = θ(i)

end
end
update C(i+1) = g(C(i))

end
for i = n+ 1, ... do

follow the above steps except for proposing samples,
use θ1 = θ(i) + ζ1, ζ1 ∼ N (0, C(i)) and
θ2 = θ(i) + ζ2, ζ2 ∼ N (0, 0.5C(i))

end
Algorithm 1: Delayed Rejection Adaptive Metropolis
(DRAM) algorithm [19].

Model Name Resistance Model p(v)

c 0.001cv2

ca 0.001cv2 + 0.1a
cba 0.001cv2 + 0.01bv + 0.1a

TABLE I
DIFFERENT RESISTANCE MODELS.

different response times of the vehicle during acceleration
and deceleration.

We also infer the parameters from each of the 7 individual
datasets with different average velocity vave, and show how
the data quality affects the inference. We plot the median
value, 25th quantile and 75th quantile of the inferred param-
eters as a function of vave in Fig. 6. On panel (a), we can
observe that the time delay consistently falls between 0.4 s
to 0.75 s among all datasets, and there exist multiple modes
in the marginal distribution of the delay since some sample
distributions show a different peak from the one given by
the MAP estimate. This further justifies that there might be
two delays corresponding to different behaviors of the CAV,
even for a single dataset. On panels (b) and (c), we can see
large changes in the median values of c and b when the
average velocity is low, although the coefficients should be
independent of the velocity according to (3). The quality of
inference on resistance coefficients depends on the average
velocity. This implies that the resistance model is less reliable
at low speeds and that the resistance forces do not affect the
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Fig. 5. Marginal distributions of the parameters obtained from the
combined dataset: (a) c model; (b) ca model; (c) cba model. The MAP
estimates are indicated by red dots.

(a) (b)

(c) (d)

Fig. 6. Bayesian inference of 4 parameters using separate datasets: time
delay τ and resistance coefficients c, b, and a, based on 7 datasets with
different average velocity vave. Median, median plus minus 25th quantiles
and MAP estimates are plotted for different resistance models.

car following behavior so significantly when the velocity is
low. It also indicates that high velocity data are better for
inferring the coefficients of resistance terms.

We plot the root mean square error (RMSE) of the state
derivatives between those obtained from data and those given
by the MAP and median estimates of the parameters in
Fig. 7. The RMSE of ḣ is exactly the same for each dataset
regardless of the parameters. This is because ḣ in (1) is not
influneced by any parameter (both vL and v are from data),
and thus, the error in ḣ cannot be controlled. The RMSE of
v̇ is affected by the parameters. The errors in all the models
and estimates are close, they give overlapping curves.

We use the MAP estimates and 10 percent of the samples
obtained for each dataset to simulate the system with the
input (the speed of the lead CHV) taken from the experi-
mental data. We show the simulation results for two datasets,

(a) (b)

Fig. 7. RMSE in the state derivative given by the MAP and median
estimates of the parameters for different resistance models. The estimates
are obtained from separate datasets. Note that the curves obtained for the
various scenarios overlap.

vave = 7 m/s and vave = 26 m/s, with the cba model in
Fig. 8. The simulation for vave = 7 m/s is plotted in Fig. 8(a)
and (c). For this dataset the spreads of c, b and a are wide;
see the yellow solid lines with error bars in Fig. 6. Yet,
the simulation results lie within a narrow range as indicated
by the shaded area. This demonstrates that uncertainties in
the resistances are less relevant when the velocity is small.
The simulation for vave = 26 m/s is plotted in Fig. 8(b)
and (d). The simulation results enclose a wide region, and
both the MAP simulation and the median of 500 simulations
give small velocity error but large headway error between
simulation and data. The headway error indicates that there
exist unmodeled dynamics, and the dataset with large speed
is more sensitive to errors in the state derivative. This sen-
sitivity is caused by reaching the saturation limits depicted
in Fig. 1(b) (where the range policy V saturates for large
headway h > hgo).

Although its control law was predefined, the CAV’s re-
sponse has uncertainties in real experiments. These un-
certainties can be considered as part of the unmodeled
dynamics, which cannot be captured by our current model.
In order to increase the flexibility of the model and further
reduce its error, calibrations are needed for more parameters.
Furthermore, minimizing the error in the state derivative
(which was the case in our method) does not always lead
to minimal error in closed-loop simulations, since there is
measurement noise in data and additional error can be intro-
duced by numerical differentiation when obtaining the state
derivative. To reduce the headway error in the simulation,
one may need to calibrate more parameters, include closed-
loop simulations when calculating the posterior, or infer both
states and parameters together from data.

To further examine the MAP and median estimates in-
ferred from each dataset, we simulate the system with the
MAP and median estimates and plot the RMSE of headway
and velocity in Fig. 9. Note that the simulation with the
median estimate is different from the median of the 500
simulations in Fig. 8. First, we observe in Fig. 9 that the
errors in both headway and velocity increase as the average
velocity increases from 2 m/s to 18 m/s. Most of the datasets
have relatively small simulation RMSE in both headway
and velocity except the dataset with largest average velocity
vave = 26 m/s (for the reasons discussed above). Second, the
three resistance models do not show significant difference
in simulation, which indicates that using the dominant term



Fig. 8. Experimental data and simulation results for the cba model. The
shaded area shows the range of simulations using 500 samples and solid
red line gives the median of those simulations. The dashed black line is the
simulation based on the MAP estimate. (a), (c) show the simulation results
for dataset vave = 7m/s with MAP estimate: τ = 0.70 s, c = 0.64m−1,
b = 0.69 s−1, a = 0.52m/s2; while (b), (d) show the results for dataset
vave = 26m/s with MAP estimate: τ = 0.58 s, c = 0.34m−1, b =
0.19 s−1, a = 0.14m/s2.

(a) (b)

Fig. 9. Simulation error given by the MAP and median estimates of the
parameters for different resistance expressions. The estimates correspond to
separate datasets. The curves obtained for the various scenarios overlap.

0.001cv2 with the appropriate value for c may be sufficient
to capture the effect of resistance forces. Third, the median
and the MAP estimate give similar simulation RMSE. This
implies that the MAP estimate can be used as an alternative
to the median value. Since the MAP estimate is much faster
to obtain, it can be used for real-time parameter inference,
potentially in a time-varying fashion; but this topic is beyond
the scope of this paper.

V. CONCLUSIONS AND FUTURE WORK

Our results showed a successful implementation of the
Delayed Rejection Adaptive Metropolis (DRAM) method
for inferring the time delay and resistance coefficients of
a connected automated vehicle from field data. We observed
multiple modes in the distribution of the delay parameter
indicating the existence of different time delays correspond-
ing to acceleration and braking. The time delay estimations
were consistent between all the datasets, giving a value
around 0.5 s to 0.7 s. The time delay did not have significant
correlation with the resistance terms, while we observed
strong correlation between linear and quadratic resistance co-
efficients. The DRAM sampling method gave the distribution
of the parameters so that we could show the uncertainty of
the prediction. The maximum a posteriori probability (MAP)
estimate was computationally fast and could potentially be
implemented for real-time inference while providing reason-
able prediction. A future application can be to identify the
lateral dynamics for connected automated vehicles.
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